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A finite element formulation of neutral solute transport across a contact interface between deformable

porous media is implemented and validated against analytical solutions. By reducing the integral
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statements of external virtual work on the two contacting surfaces into a single contact integral, the

algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas

continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is

achieved using a penalty method. This novel formulation facilitates the analysis of problems in

biomechanics where the transport of metabolites across contact interfaces of deformable tissues may

be of interest. This contact algorithm is the first to address solute transport across deformable

interfaces, and is made available in the public domain, open-source finite element code FEBio

(http://www.febio.org).

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Biological soft tissues may be modeled as deformable porous
media to describe the deformation of their solid matrix as well as
the transport of their interstitial fluid (Mow et al., 1980; Lai et al.,
1991). The interstitial fluid typically consists of a solvent and
multiple solutes, which play an important role in tissue metabolism.
Finite element modeling of solid deformation and fluid transport in
porous media has been an active topic of research over the last two
decades (Simon et al., 1996; Frijns et al., 1997; Sun et al., 1999;
Kaasschieter et al., 2003; Steck et al., 2003; Sengers et al., 2004;
Yao and Gu, 2007). Modeling of contact interfaces in solid–fluid
mixtures under finite deformation has been of particular interest in
certain areas of biomechanics, such as diarthrodial joint mechanics
(Donzelli et al., 1999; Un and Spilker, 2006; Yang and Spilker, 2007;
Ateshian et al., 2010). However, an algorithm for modeling a
deformable contact interface that allows solute transport has not
yet been proposed. The objective of this article is to present a
formulation of solute transport across a contact interface that builds
upon our recent algorithm for contact of biphasic (solid–fluid)
mixtures under finite deformation (Ateshian et al., 2010), and our
recent implementation of neutral solute transport in a biphasic
medium (Ateshian et al., 2011). Sample contact problems are
presented, which demonstrate the application of this algorithm to
problems involving large solid deformation and solvent and solute
transport.
ll rights reserved.
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shian).
2. Contact algorithm

A biphasic-solute mixture consists of a mixture of a solid matrix,
a solvent and a solute (Mauck et al., 2003). Each of these constitu-
ents is idealized as intrinsically incompressible, but the mixture can
change in volume as a result of fluid exchanges with the solid matrix
pore space (Bowen, 1980; Mow et al., 1980; Lai et al., 1991). The
volume fraction of the solute is negligible in comparison to that of
the solid (js) and solvent (jw), so that jsþjw � 1.

The solute concentration (moles per volume of interstitial
fluid) is denoted by c. From principles of physical chemistry, c is
not necessarily continuous across a boundary or contact interface,
therefore it is not suitable as a nodal variable in a finite element
analysis. As shown previously (Sun et al., 1999; Ateshian et al.,
2011), based on the continuity of the solute mechano-chemical
potential across non-dissipative interfaces (Ateshian, 2007), a
suitable nodal variable is the effective concentration ~c ¼ c= ~k,
where ~k is the effective solubility (representing the fraction of
the pore space actually occupied by the solute).

The fluid pressure, denoted by p, represents a combination of
osmotic and mechanical effects. In the presence of solutes, the fluid
pressure is not necessarily continuous across a boundary or contact
interface. Therefore, based on the continuity of the solvent
mechano-chemical potential across non-dissipative interfaces
(Ateshian, 2007), a more suitable nodal variable in a finite element
implementation is the effective fluid pressure ~p ¼ p�RyFc, where ~p

represents the mechanical contribution to the pressure. The term
RyFc is the osmotic contribution to the pressure, where R is the
universal gas constant, y is the absolute temperature (assumed
uniform), and F is the osmotic coefficient that describes the
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deviation of the osmotic pressure from ideal physico-chemical
behavior.

The governing equations for a biphasic-solute mixture (Mauck
et al., 2003; Ateshian et al., 2011) consist of the balance of linear
momentum for the mixture,

div T¼ 0, ð2:1Þ

where T is the mixture Cauchy stress; the balance of mass for the
mixture,

divðvsþwÞ ¼ 0, ð2:2Þ

where vs is the solid matrix velocity and w is the volumetric flux
of solvent relative to the solid; and the balance of mass for the
solute,

1

J

Ds
ðJjw ~k ~cÞ

Dt
þdiv j¼ 0, ð2:3Þ

where J¼ det F, F is the deformation gradient of the solid matrix,
Ds=Dt is the material time derivative in the spatial frame, follow-
ing the solid, and j is the molar flux of solute relative to the solid.
The dependence of w and j on gradients of fluid pressure and
solute concentration may be derived from the balance of linear
momentum for the solvent and solute (Mauck et al., 2003;
Ateshian et al., 2011) (see Supplementary Data). These explicit
relations are not needed for the presentation of the biphasic-
solute contact formulation.

These governing equations may be solved in a finite element
framework by applying the principle of virtual work and separat-
ing the virtual work dW into internal and external parts using the
divergence theorem, as described previously (Bonet and Wood,
1997). For contact analyses (Laursen and Simo, 1993; Yang and
Spilker, 2007; Ateshian et al., 2010), only the external virtual
work is needed, which is given by

dWext ¼

Z
@b
ðdv � tþd ~pwnþd~cjnÞ da, ð2:4Þ

where dv is the virtual velocity of the solid, d ~p is the virtual
effective fluid pressure, and d~c is the virtual molar energy of the
solute; b represents the mixture domain in the spatial frame and
@b is the boundary of b; da is an elemental mixture area on @b.
Here, t¼ T � n is the mixture traction, with n representing the unit
outward normal on @b; wn ¼w � n is the normal component of the
relative solvent flux; and jn ¼ j � n is the normal component of the
relative solute flux. According to axioms of mass and momentum
balance across surfaces (Eringen and Ingram, 1965), t, wn and jn
must be continuous across boundaries and contact interfaces.

Because of the close similarity between the terms d ~pwn and
d~cjn, the finite element treatment of contact of biphasic-solute
media is a natural extension to that of contacting biphasic media
as presented in our earlier study (Ateshian et al., 2010). Therefore
we forgo the detailed derivation and summarize the salient
equations. A contact interface is defined between two surfaces,
@bð1Þ and @bð2Þ. The portions of these surfaces which are in contact
are respectively denoted by gð1Þ and gð2Þ. The external virtual work
produced at the contact interface is the sum of two expressions of
the form given in (2.4), evaluated on gð1Þ and gð2Þ. Accounting for
the continuity conditions tð1Þ þtð2Þ ¼ 0, wð1Þn þwð2Þn ¼ 0, and
jð1Þn þ jð2Þn ¼ 0, the contact virtual work, denoted by dGc , may be
reduced to an evaluation on the first of the two surfaces,

dGc ¼

Z
gð1Þ
ðdvð1Þ�dvð2ÞÞ � tð1Þ dað1Þ þ

Z
gð1Þ
ðd ~pð1Þ�d ~pð2ÞÞwð1Þn dað1Þ

þ

Z
gð1Þ
ðd~c ð1Þ�d~c ð2ÞÞjð1Þn dað1Þ: ð2:5Þ

By substituting these traction and normal flux continuity condi-
tions in the formulation of a single contact integral, these
conditions become enforced automatically, since equal and oppo-
site values become prescribed on opposing contact surfaces.

In a finite element implementation the solution for the
displacement of the solid matrix, u, effective fluid pressure ~p,
and effective solute concentration ~c is obtained at the nodes of
the finite element mesh by letting dW ¼ 0. Since dW is a non-
linear function of these variables, the solution is obtained itera-
tively using the linearization of dW along incremental changes
Du, D ~p, and D ~c . When applied to dGc , this linearization has the
general form

DdGc ¼
X2

i ¼ 1

DdGc½DuðiÞ�þDdGc½D ~p
ðiÞ
�þDdGc½D~c

ðiÞ
�, ð2:6Þ

where Df ½Dq� represents the directional derivative of the function
f along Dq (Bonet and Wood, 1997). Clearly, the linearization
needs to be performed by accounting for deformation, pressure
and concentration on both of the contacting surfaces.

The linearization process involves the evaluation of Dtð1Þ, Dwð1Þn

and jð1Þn , since they appear in (2.5). A standard approach for
evaluating these directional derivatives is to employ the penalty
method for relating the traction (Laursen and Simo, 1993) and
fluxes (Ateshian et al., 2010) to the deformation, pressure and
concentration, in a manner that helps enforce continuity require-
ments on these nodal variables. For a frictionless contact inter-
face, as considered here, let tð1Þ ¼ tnnð1Þ. Then the penalty method
provides that

tn ¼
eng, go0,

0, gZ0,

(
ð2:7Þ

where the gap function g measures the distance between gð1Þ and
gð2Þ. en is a parameter that penalizes large values of g to prevent
unacceptable overlap (go0) of the contacting surfaces. By choos-
ing en to be sufficiently large, the gap function g will tend toward
zero, enforcing the continuity of the normal component of solid
velocity across the contact interface (Laursen and Simo, 1993).

Similarly, the penalty method may be used to help enforce
continuity of the effective fluid pressure and effective solute
concentration, by letting

wn ¼ epð ~p
ð1Þ
� ~pð2ÞÞ, tno0,

~pðiÞ ¼ ~pn, tn ¼ 0,

(
ð2:8Þ

and

jn ¼ ecð~c
ð1Þ
�~c ð2ÞÞ, tno0,

~c ðiÞ ¼ ~cn, tn ¼ 0,

(
ð2:9Þ

where wn ¼wð1Þ � nð1Þ, jn ¼ jð1Þ � nð1Þ; ep and ec are the penalty
parameters for the solvent and solute flux, respectively; and ~pn

and ~cn are the ambient pressure and concentration outside the
contact interface. By choosing sufficiently large values for ep and ec ,
the continuity requirements ~pð1Þ ¼ ~pð2Þ and ~c ð1Þ ¼ ~c ð2Þ are enforced
to within an acceptable tolerance. The units of ec and ep are those
of diffusivity per unit length (e.g., m/s) and hydraulic permeability
per unit length (e.g., m3/N s), respectively. For contact interfaces
where one of the contacting surfaces is impermeable to the solute
(or solvent), it suffices to let jn ¼ 0 (or wn ¼ 0) on gð1Þ; this is done
simply by not enforcing any boundary condition explicitly, since
jn ¼ 0 (wn ¼ 0) is a natural boundary condition for the solute
(solvent). Therefore this algorithm may also be adapted for contact
of a biphasic-solute material against a biphasic material (jn ¼ 0),
and against an impermeable elastic or rigid solid (wn ¼ 0 and
jn ¼ 0).

This penalty method may also be incorporated within an
augmented Lagrangian algorithm (Laursen and Simo, 1993; Yang
and Spilker, 2007) to provide a more stable numerical scheme for
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enforcing these continuity requirements, when the choice of large
penalty parameters compromises the convergence of iterative solu-
tion schemes. Since the derivation of DdGc and the formulation of
the matrix form of the discretized contact equations is a natural
extension of the biphasic contact algorithm (Ateshian et al., 2010),
only salient equations are provided in Supplementary Data section.
Fig. 2. Analytical (solid curves) and finite element (symbols) solutions to the 1-D

transient diffusion problem across a contact interface, at four representative time

points. Solid circles represent nodal values of the concentration in the range

�h=2rzr0 and solid squares represent corresponding values in the range

0rzrh=2. Continuity of the concentration across the contact interface, z¼0, is

enforced by the contact interface algorithm. Agreement with the analytical

solution serves to further validate the finite element implementation.
3. Validations and examples

Classical diffusion problems can be recovered in the frame-
work of solute transport in deformable porous media when
assuming that there is no solid deformation, that ~k ¼ 1 and
F¼ 1, and that solute diffusivity in the porous medium is the
same as in free solution (see Supplementary Data). Analytical
solutions are readily available for various canonical diffusion
problems, such as the one-dimensional transient diffusion and
steady-state convection problems considered here.

3.1. The 1-D transient diffusion

The canonical problem of one-dimensional diffusion through a
porous medium, exposed to a well-stirred bathing solution on one
face and an impermeable wall on the opposite face, has a closed-
form solution for the concentration c (Crank, 1979),

cðz,tÞ

cn
¼ 1þ

4

p
X1
n ¼ 1

ð�1Þn

2n�1
cos n�

1

2

� �
p 1

2
�

z

h

� �� �

�exp � n�
1

2

� �2

p2 d

h2
t

" #
, �

h

2
rzr

h

2
, ð3:1Þ

where t is the time, z is the spatial dimension, h is the height, cn is
the bath concentration and d is the diffusivity. If the medium is
split in half at z¼0 to produce a contact interface (Fig. 1), the
analytical solution for diffusion through the entire medium,
including the contact interface, remains unchanged. Therefore
this canonical problem may be used toward the validation of the
finite element contact algorithm.

Consider that the two contacting porous media are cubical in
geometry, with each cube being 1 mm on the side (h¼2 mm). Let
the external solute concentration on the exposed face of the
bottom cube (z¼�1 mm) be cn ¼ 1 mM. Assume that the
Fig. 1. The 1-D transient diffusion across a contact interface. All faces are

impermeable to the solvent and solute, except where facing the bathing solution

(z¼�h/2).
effective solubility is ~k ¼ 1 (thus ~c ¼ c), the osmotic coefficient
is F¼ 1, and the fluid volume fraction is jw ¼ 0:8. The ambient
pressure is p¼0 and ambient temperature is y¼ 298 K. Therefore, in
the finite element analysis, the boundary conditions on the face
exposed to the bathing solution are t¼ 0, ~p ¼�Rycn ¼�2:5 kPa,
and ~c ¼ cn. The stress–strain response of the solid matrix is neo-
Hookean, with Young’s modulus of 10 MPa and Poisson’s ratio of 0.
Since the osmotic pressure difference between the external bath and
the porous medium prior to solute uptake is much smaller than the
solid matrix modulus, negligible solid deformation occurs in this
problem. The hydraulic permeability of the solid matrix to the
solvent is k¼10�4 mm4/N s. The solute diffusivity in the porous
medium is d¼5�10�4 mm2/s. The contact penalty parameters for
this analysis are en ¼ 1400 N=mm, ep ¼ 10�3 mm3=N s, and ec ¼

4� 10�4 mm=s. Since the contact interface needs to be engaged to
enforce interface conditions in the finite element analysis, a small
displacement of 10�3 mm is prescribed at z¼h/2 to push the two
blocks together and produce nominal contact.

The transient response of the concentration is shown in Fig. 2.
The spatial distribution of the concentration cðz,tÞ at four repre-
sentative time points provides evidence of continuity of the
concentration across the contact interface at z¼0. A comparison
of the concentration profiles from the analytical and finite
element solutions also demonstrates agreement between the
two methods.
3.2. The 1-D steady-state convection

Consider one-dimensional steady-state convection of solute
and solvent through a porous medium of thickness h and porosity
jw. The fluid pressure and solute concentration are prescribed
upstream (pu and cu, respectively) and downstream (pd and cd).
For the given conditions, the uniform solvent flux, w0, is related to
the pressure gradient according to Darcy’s law,

w0 ¼ k
pu�pd

h
: ð3:2Þ

The steady-state concentration distribution over the range
�h=2rzrh=2 is given by

cðzÞ ¼
cd ePeððz=hÞþ ð1=2ÞÞ�1
� �

þcuePe 1�ePeððz=hÞ�ð1=2ÞÞ
� �

ePe�1
, ð3:3Þ

where Pe¼ hw0=djw is the Peclet number, representing the ratio
of convective solvent velocity to diffusive solute velocity. Also



Fig. 4. Two-dimensional contact with solute transport. The semi-cylindrical slab

has a radius of 3 mm and an initial solute concentration of 0 mM (t¼0). The

bottom rectangular slab dimensions are 3 mm�2 mm and the initial solute

concentration is 1 mM. The top slab is displaced downward by 2 mm in 1 s, then

allowed to relax. Solute transports from the bottom slab to the top slab, while also

diffusing out into the ambient bath. In the early time response (t¼1 s), solute

transport occurs over a thin boundary layer across the contact interface. Over

time, the solute concentration decreases in both slabs, eventually reducing to zero.

Contour plots demonstrate continuity of the (effective) concentration across the

contact interface.
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note that

lim
Pe-0

cðzÞ ¼ cd
1

2
þ

z

h

� �
þcu

1

2
�

z

h

� �
: ð3:4Þ

The finite element model consists of two cubes, 1 mm on the
side (h¼2 mm), with the contact interface located at z¼0. The
solid matrix of each cube is described by a neo-Hookean
constitutive model, with Young’s modulus¼100 MPa and
Poisson’s ratio¼0. The porosity is jw ¼ 0:8, the solute diffusivity
is d¼5�10�4 mm2/s and the hydraulic permeability is k¼

10�3 mm4/N s. The fluid pressure downstream is pd ¼ 0 MPa.
The solute concentrations are cu ¼ 1 mM and cd ¼ 0 mM. For these
values, the Peclet number is given by Pe¼ 2:5pu and may be
varied by changing the value of the upstream pressure. The values
of pu ¼ 0, 0.4 and 4 MPa are used to produce Pe¼0, 1 and 10. As
done in the diffusion problem, a small displacement of 10�3 mm
is prescribed at z¼h/2 to push the two blocks together and
produce nominal contact.

Results for the steady-state response (Fig. 3) demonstrate
continuity of the concentration across the contact interface and
agreement with the analytical solutions in (3.3) and (3.4).

3.3. The 2-D transient contact

Consider the two-dimensional contact of a semi-cylindrical
deformable porous slab (radius¼3 mm) displaced against a
rectangular slab (3 mm wide �2 mm high) (Fig. 4). The solute
concentration is initially 0 mM in the rectangular slab, and zero in
the semi-cylinder. The ambient bath, whose concentration is 0 mM,
wets the exposed portions of the contact surfaces as shown in Fig. 4.
The solute solubility is ~k ¼ 1; the osmotic coefficient is F¼ 1; the
diffusivity inside the porous medium is 5�10�4 mm2/s and the
diffusivity in free solution is 10�3 mm2/s. The hydraulic perme-
ability is 10�3 mm4/N s. The solid matrix is neo-Hookean with
Young’s modulus of 1 MPa and Poisson’s ratio of 0.3. The semi-
cylindrical slab is displaced downward by 2 mm over a ramp time of
1 s, then maintained there for 6000 s.

In the early time response, there is only limited solute
transport out of the rectangular slab, in a narrow boundary layer
near its top surface (Fig. 4). Over time, substantial solute transport
from the rectangular slab into the semi-cylindrical slab takes
place, progressively evening out the solute distribution between
the two contacting bodies. This solute transport occurs at the
same time as solvent transports out of the two bodies, producing
a stress-relaxation and recoiling behavior of the solid matrixes.
Eventually all of the solute diffuses out of both contacting bodies,
producing a steady-state concentration of zero. Contour plots of
Fig. 3. Analytical (solid curves) and finite element (symbols) solutions to the 1-D

steady-state convection problem across a contact interface, at three representative

values of the Peclet number. Solid circles represent nodal values of the concentra-

tion in the range �h=2rzr0 and solid squares represent corresponding values in

the range 0rzrh=2. Continuity of the concentration across the contact interface,

z¼0, is enforced by the contact interface algorithm. Agreement with the analytical

solution serves to further validate the finite element implementation.
the concentration exhibit continuity across the contact interface
throughout the large range of deformation of the solid.
4. Discussion

This study provides what appears to be the first finite element
implementation of solute transport across contact interfaces in
deformable porous media. It is shown that this novel implemen-
tation is a natural extension of our recently formulated biphasic
contact algorithm (Ateshian et al., 2010). A validation of the finite
element code is achieved by comparing results against available
analytical solutions for solute diffusion (Fig. 2) and convection
(Fig. 3), using canonical problems where solid deformation is
negligible. In addition, an illustration is provided for a two-
dimensional contact problem where large deformations occur
(Fig. 4).

Biological soft tissues often interact closely in crowded envir-
onments in situ, such as cartilage contacting cartilage, or cartilage
contacting synovium, fat pads or ligaments in diarthrodial joints.
Various metabolites may be exchanged between these tissues as a
result of contact interactions. Therefore the ability to model
solute transport across contact interfaces enhances the tool set
available for bioengineers in their investigation of problems that
combine mechanics and transport. This contact algorithm is made
available in the open-source FEBio code (http://www.febio.org),
available in the public domain, to enhance its dissemination.

http://www.febio.org
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